The Museum of Applied Arts and Sciences acknowledges Australia’s First Nations Peoples as the Traditional Owners and Custodians of the land and gives respect to the Elders – past and present – and through them to all Aboriginal and Torres Strait Islander peoples.
Aboriginal and Torres Strait Islander peoples are advised that the MAAS website contains a range of Indigenous Cultural Material. This includes artworks, artifacts, images and recordings of people who may have passed away, and other objects which may be culturally sensitive.

No image is publicly available for this object

Due to the age of the Museum's collection, some objects have not been digitised yet. Images may also not be available due to copyright, cultural or privacy reasons.

Khalifa Stadium, working three-dimensional model

Made 1999

The model demonstrates the principle of erecting and pre-stressing a three dimensional cable net roof, which was designed by Arup (Sydney) engineers for the Khalifa Stadium, Doha, Qatar.

Khalifa Stadium is the first stadium built in Qatar and was completed in 1976. The stadium was completely renovated in preparation for the 2006 Asian Games. From 2002 a team from Arup’s Sydney office worked with Cox Architects to develop a scheme for the stadium renovation including seating, roof and a private ...

Summary

Object No.

2007/90/1

Object Statement

Architectural model, Khalifa Stadium roof, Doha, Qatar, designed by Arup, Philip Cox Architects and others, made by Ian Ellerby for Arup, London, England, 1999 - 2006.

Physical Description

Architectural model, Khalifa Stadium roof, 1:300 scale, timber / metal, made by Ian Ellerby for Arup, London, England, 1999 - 2006.

A 1:300 scale model of the roof of the Khalifa Stadium, Doha, Qatar, which demonstrates the principle of erecting and pre-stressing a three-dimensional cable net roof.

Marks

There is a plaque in the lower right-hand corner with these words: "Cable net stadium roof (1:300 scale operable model. The model demonstrates the principle of erecting and pre-stressing a three-dimensional cable net roof. Arup, Arup Associates, Ove Arup & Partners".

Dimensions

Height

520 mm

Width

1000 mm

Depth

1000 mm

Production

Notes

The model was made by London-based model maker, Ian Ellerby. He worked in Arup's architecture/engineering practice. The model was made for the British Council touring exhibition 'Football Nation', which was displayed in several cities in the Middle East and Asia from November 1999 to February 2002.

The British Council saw the exhibition as a new way of promoting the UK abroad. Rather than highlighting the usual cultural exports such as the visual and performing arts, the exhibition focused on British football culture and British expertise in stadium design and construction. The exhibition's first venue was Doha.

The model was subsequently moved to Australia, and it was used and stored by Arup in Sydney to showcase their work during the development of the Stadium. After the project was completed in February 2005, the model was stored in the basement in Arup's Sydney office, until December 2006, when it was borrowed by the Museum and displayed in the Engineering Excellence exhibition in that year.

Arup entered Khalifa Stadium for the Building and Structures category in the 2006 Engineering Excellence Awards program. The Museum chose the project for the 2006 Engineering Excellence Awards display (December 2006-December 2007).

Arup offered the model for display and agreed to the Museum's request to improve the working component that demonstrates the principle of erecting and pre-stressing a three-dimensional cable net roof. The Museum's Interactives section reworked the gearing mechanism and clutch, so as to bring the model to a suitable standard for display.

Given that the model was made a few years before the public commencement of the Khalifa Stadium refurbishment the relationship between this project and the exhibition model is unclear. However there is no doubt that the model demonstrates the principles employed in the design of the Khalifa Stadium roof.

Arup & Associates is an international engineering firm based in London. Arup has offices in eighty countries and its engineers have been part of several thousand large projects worldwide. Arup was founded by Danish engineer Ove Nyquist Arup (1885-1988) who established his reputation with Highpoint, Berthold Lubetkin's pioneering London apartment tower (1935). Arup's work on the Sydney Opera House project added further lustre and boosted the firm's expansion. Arup's engineers have worked closely with numerous notable architects,

Made

1999

History

Notes

Khalifa Stadium Upgrade: The firms and roof engineering

When the delapidated Khalifa Stadium, Doha, Qatar, required refurbishing for the 2006 Asian Games, engineering consultants Arup (Sydney) converted a 20,000 seat stadium into a 50,000 seat stadium with a dramatic yet delicate roof and signature lighting arch.

The Stadium formed part of the Khalifa Sports City redevelopment in Doha, Qatar. Arup's primary role was to detail the design and produce the documentation of the Stadium's main roof and lighting arch. This was technically a very demanding task. Arup worked with a number of design and contruction teams in a number of different countries, including Birdair Inc., USA (manufacturing and installation of fabric panels), Schlaich, Bergermann & Partner, Germany (engineer safe methods of lifting and stressing cables), SEACAD, Malaysia (3D steel model of the roof and lighting arch and shop drawings), Wire Rope Industries, Canada (supply, fabrication and shop drawing of cables) [shop drawings = these are drawings, diagrams, schedules, and other data specially prepared for the work by the contractor or sub-contractor, manufacturer, supplier, or distributor to illustrate some portion of the work], International House General Trading, United Arab Emirates (day-to-day running of the project, coordination of consultants and sub contractors), VSL, Switzerland (safe stressing of the roof and lighting arch), Eversendari, Malaysia and United Arab Emirates (developed the temporary steel work design and directed the activities of Eversendari on site), Arup, Sydney, Australia (conceived the structure of the roof and lighting arch, developed the structural concept, delivery of engineering drawings and design on time and to budget, participated in the development of safe erection procedures for the roof and lighting arch, detailed design of the steel and cable elements, drafting of the entire structure in 3D, using Bentley Structural software), Midmac Sixconstruct, Belgium (responsible for the delivery of the entire project), Pfiefer, Germany (cable erection). GHD, Sydney (project management), Cox/PTW, Sydney, in association with GHD, Qatar (architects). The project commenced in 2003 and was completed in February 2005.

Using tension to give a cloud-like appearance, the stadium comprises only stressed cables and 15,000 square metres of lightweight polytetrafluoroethylene (PTE) [teflon] coated glassfibre membrane. The roof is supported by a delicate cable net structure. Comprising a series of radial cable stays and trusses, the cable net is secured on one side by compression arches and on the other side by the main catenary. The arches and catenary meet, so that the opposing tension and compression forces are balanced, with no eccentricity. They are tied down at the northern and southern end of the stadium by concrete buttress foundations.

The geometry of the cables and main catenary were determined such that the stressing of the main catenary, pulls and secures the radial trusses into the roof shape. This arrangement confers stability, allowing the roof to resist the strong and varied wind loads that are common in the surrounding flat terrain. Arup tested the arrangement in a wind tunnel laboratory to determine the worst possible wind loading on the roof, testing 12 combinations of severe upward and downward loadings.


The Lighting Arch

Mirroring the roof arch, a slender lighting arch extends across the opposite side of the stadium, providing a striking visual counterpoint. The arch was designed to support sports lights, loudspeakers and fireworks. Leaning at a steep angle without visible means of support, the steel arch spans 265m across the stadium. Soaring 75m into the sky at and angle of 24 degrees from the vertical, the slender cable-stiffened arch comprises two 1.1m diameter circular hollow sections. The arch is made from a slender Vierendeel truss that is anchored to the same buttress foundation as the roof (Vierendeel truss = Named after the Belgian engineer, Arthur Vierendeel [1852-1940], who developed the design in 1896. This truss has rigid upper and lower beams, connected by vertical beams. The joints are also rigid. All members of the Vierendeel truss are subject to bending moments. This truss has the one distinct advantage, namely, the elimination of diagonal members).

Careful consideration was given to the loading of this lightweight structure, because of the stadium's extreme desert environment. The stadium was designed to withstand a temperature range of 5 to 85 degrees centigrade, and models were tested in a wind tunnel to ensure that it would withstand the strong wind loads. Arup engineers developed and analysed cable systems, which had no obviously visible means of support, by using their own in-house GSS Relax software. A form-finding process was carried out on both structures to find the most efficient geometry and prestress field, ensuring that they were stiff and able to resist the applied loads.


Engineering Aesthetics

The stadium's structural connections are attractive and striking in appearance. Arup developed a series of elegant cigar-shaped columns and struts to support the main roof arches. Arup investigated and developed design methodologies that minimised their tonnage by 15%. The key connective devices for the cables were clamps. On both the main roof and the lighting arch, clamps form the geometry and ensure that the pre-stress forces are transferred through the structural system. As well as carrying out the design in accordance with international codes and guidelines, Arup formulated specifications and coordinated the prototype testing to verify the clamping procedure and design.

Arup created 3D computer models of the main roof and lighting arch. These models allowed the transfer of detailed information during the design, fabrication, and construction stages, ultimately reducing the time spent on design and drafting. 3D modelling also facilitated the explanation of key details and 'structural logic' to the client and project team. This was vitally important for the complicated geometry-dependent Khalifa Stadium, and allowed Arup to communicate information ranging from the overall architectural impact of a connection to its finer build-up details, fabrication sequence and buildability. The modelling also facilitated Arup's checking of the shop detailer's model. This allowed a heavier reliance to be placed on the shop drawings and ensured that fabrication matched the design intent, resolving any issues prior to fabrication and erection.

Des Barrett, Curator Science and Industry.

(The curator acknowledges the assistance of Peter MacDonald, Senior Associate, Arup, Sydney, in compiling these notes).

Source

Credit Line

Gift of Arup, 2007

Acquisition Date

23 July 2007

Cite this Object

Harvard

Khalifa Stadium, working three-dimensional model 2019, Museum of Applied Arts & Sciences, accessed 19 September 2019, <https://ma.as/366616>

Wikipedia

{{cite web |url=https://ma.as/366616 |title=Khalifa Stadium, working three-dimensional model |author=Museum of Applied Arts & Sciences |access-date=19 September 2019 |publisher=Museum of Applied Arts & Sciences, Australia}}

Incomplete

This object record is currently incomplete. Other information may exist in a non-digital form. The Museum continues to update and add new research to collection records.

Know more about this object?

TELL US

Have a question about this object?

ASK US